Selective Solder Wire, SN100C, Solid Core Chemtools Pty Ltd Chemwatch: **5659-50** Version No: **4.1** Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017 #### Chemwatch Hazard Alert Code: 2 Issue Date: **12/03/2024**Print Date: **14/03/2024**S.GHS.AUS/NZ.EN.E # SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | Selective Solder Wire, SN100C, Solid Core | |-------------------------------|---| | Chemical Name | Not Applicable | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Use according to manufacturer's directions. Massive form of the metal. Massive or bulk metals (as opposed to dispersed or divided metals) are characterised by having a well-ordered infinite lattice of metal atoms. Massive metals exist in various forms, including sheets, rods, ingots, foils, pellets, wire or on occasion, dusts. # Details of the manufacturer or supplier of the safety data sheet | Registered company name | Chemtools Pty Ltd | Chemtools Ltd | |-------------------------|---|--| | Address | Unit 2, 14 - 16 Lee Holm Road St Marys NSW 2760 Australia | 15/62 Factory Road Belfast Christchurch 8051 New Zealand | | Telephone | 1300 738 250, +61 2 9833 9766 | +64 3 323 4177 | | Fax | +61 2 9623 3670 | +61 2 9623 3670 | | Website | www.chemtools.com.au | www.chemtools.co.nz | | Email | sales@chemtools.com.au | sales@chemtools.com.au | # **Emergency telephone number** | Association / Organisation | Poisons Information Centre | National Poisons Centre | |-----------------------------------|----------------------------|-------------------------| | Emergency telephone numbers | 13 11 26 | 0800 764 766 | | Other emergency telephone numbers | Not Available | Not Available | # **SECTION 2 Hazards identification** # Classification of the substance or mixture # HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | |--------------------|---| | Classification [1] | Acute Toxicity (Oral) Category 4, Serious Eye Damage/Eye Irritation Category 2A, Hazardous to the Aquatic Environment Acute Hazard Category 1 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -
Annex VI | Issue Date: **12/03/2024**Print Date: **14/03/2024** #### Label elements Hazard pictogram(s) Signal word Warning #### Hazard statement(s) | H302 | Harmful if swallowed. | |------|--------------------------------| | H319 | Causes serious eye irritation. | | H400 | Very toxic to aquatic life. | # Precautionary statement(s) Prevention | P264 | Wash all exposed external body areas thoroughly after handling. | | |------|--|--| | P270 | Do not eat, drink or smoke when using this product. | | | P273 | Avoid release to the environment. | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | # Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |----------------|--|--| | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P391 | Collect spillage. | | | P301+P312 | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | | P330 | Rinse mouth. | | # Precautionary statement(s) Storage Not Applicable # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Not regulated for transport of Dangerous Goods. #### NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) | Classification ^[1] | Acute Toxicity (Oral) Category 4, Serious Eye Damage/Eye Irritation Category 2, Hazardous to the Aquatic Environment Acute Hazard Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 1 | |---|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No
1272/2008 - Annex VI | | Determined by Chemwatch using GHS/HSNO criteria | 6.1D (oral), 6.4A, 9.1A | # Label elements Hazard pictogram(s) Page 3 of 15 #### Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** # Hazard statement(s) Version No: 4.1 | H302 | Harmful if swallowed. | |------|---| | H319 | Causes serious eye irritation. | | H410 | Very toxic to aquatic life with long lasting effects. | #### Supplementary statement(s) Not Applicable # Precautionary statement(s) Prevention | P264 | Wash all exposed external body areas thoroughly after handling. | | |------|--|--| | P270 | Do not eat, drink or smoke when using this product. | | | P273 | Avoid release to the environment. | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | #### Precautionary statement(s) Response | P330 | Rinse mouth. | | |----------------|--|--| | P301+P312 | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | | P391 | Collect spillage. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | #### Precautionary statement(s) Storage Not Applicable # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** #### **Substances** See section below for composition of Mixtures #### **Mixtures** | %[weight] | Name | |----------------------------|---------------------------| | | solder wire consisting of | | >90 | <u>tin</u> | | <1 | copper | | | which upon use generates | | NotSpec | tin fume | | NotSpec <u>copper fume</u> | | | | <1
NotSpec | # **SECTION 4 First aid measures** #### Description of first aid measures If this product comes in contact with the eyes: - ▶ Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Eye Contact Seek medical attention without delay; if pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. - Particulate bodies from welding spatter may be removed carefully. - DO NOT attempt to remove particles attached to or embedded in eye. - Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by Chemwatch: 5659-50 Page 4 of 15 Issue Date: 12/03/2024 Part Number: Selective Solder Wire SN100C Solid Core Print Date: 14/03/2024 Version No: 4.1 Selective Solder Wire, SN100C, Solid Core | | placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital. For "arc eye", i.e. welding flash or UV light burns to the eye: Place eye pads or light clean dressings over both eyes. Seek medical assistance. For THERMAL burns: Do NOT remove contact lens Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital. | |--------------|--| | Skin Contact | If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. In case of burns: Quickly immerse affected area in cold running water for 10 to 15 minutes.
Bandage lightly with a sterile dressing. Treat for shock if required. Lay patient down. Keep warm and rested. Transport to hospital, or doctor. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | Not considered a normal route of entry. • Generally not applicable. | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 Firefighting measures** # **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. # Special hazards arising from the substrate or mixture Fire Incompatibility - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - ► Avoid reaction with oxidising agents # Advice for firefighters #### Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - ▶ DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. Slight hazard when exposed to heat, flame and oxidisers. #### Fire/Explosion Hazard Welding arc and metal sparks can ignite combustibles. # Non combustible. - ▶ Not considered to be a significant fire risk, however containers may burn. - ▶ In a fire may decompose on heating and produce toxic / corrosive fumes. ### **SECTION 6 Accidental release measures** Fire Fighting # Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 Chemwatch: **5659-50** Page **5** of **15** Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** # Methods and material for containment and cleaning up # Clean up all spills immediately. Wear impervious gloves and safety glasses. Use dry clean up procedures and avoid generating dust. Place in suitable containers for disposal. #### Minor hazard. - Clear area of personnel. - Alert Fire Brigade and tell them location and nature of hazard. - ▶ Control personal contact with the substance, by using protective equipment if risk of overexposure exists. - ▶ Prevent, by any means available, spillage from entering drains or water courses. - Contain spill/secure load if safe to do so. - ▶ Bundle/collect recoverable product and label for recycling. - Collect remaining product and place in appropriate containers for disposal. - ► Clean up/sweep up area. Water may be required. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** **Major Spills** #### Precautions for safe handling Version No: 4.1 For molten metals: - · Molten metal and water can be an explosive combination. The risk is greatest when there is sufficient molten metal to entrap or seal off water. Water and other forms of contamination on or contained in scrap or remelt ingot are known to have caused explosions in melting operations. While the products may have minimal surface roughness and internal voids, there remains the possibility of moisture contamination or entrapment. If confined, even a few drops can lead to violent explosions. - · All tooling, containers, molds and ladles, which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. - \cdot Any surfaces that may contact molten metal (e.g. concrete) should be specially coated - Drops of molten metal in water (e.g. from plasma arc cutting), while not normally an explosion hazard, can generate enough flammable hydrogen gas to present an explosion hazard. Vigorous circulation of the water and removal of the particles minimise the hazard. During melting operations, the following minimum guidelines should be observed: - · Inspect all materials prior to furnace charging and completely remove surface contamination such as water, ice, snow, deposits of grease and oil or other surface contamination resulting from weather exposure, shipment, or storage. - Store materials in dry, heated areas with any cracks or cavities pointed downwards. - Preheat and dry large objects adequately before charging in to a furnace containing molten metal. This is typically done by the use of a drying oven or homogenising furnace. The dry cycle should bring the metal temperature of the coldest item of the batch to 200 degree C (400 deg F) and then hold at that temperature for 6 hours. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ► Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - ▶ DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. #### Other information Safe handling - Keep dry. - Store under cover. - Protect containers against physical damage. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ### Conditions for safe storage, including any incompatibilities # Suitable container Packaging as recommended by manufacturer. Check that containers are clearly labelled Storage incompatibility Avoid reaction with oxidising agents # Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** - X Must not be stored together - 0 May be stored together with specific preventions - + May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly. # **SECTION 8 Exposure controls / personal protection** # **Control parameters** # Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|----------------|---|---------------|------------------|------------------|-------------------------------| | Australia Exposure
Standards | tin | Tin, metal | 2 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | tin | Respirable dust (not otherwise classified) | 3 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | tin | Inhalable dust (not otherwise classified) | 10 mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure
Standards | copper | Copper (fume) | 0.2
mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure
Standards | copper | Copper, dusts & mists (as Cu) | 1 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | copper | Inhalable dust (not otherwise classified) | 10 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | copper | Respirable dust (not otherwise classified) | 3 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | copper | Copper and its inorganic compounds, as Cu respirable dust | 0.01
mg/m3 | Not
Available | Not
Available | (dsen) - Dermal
sensitiser | | Australia Exposure
Standards | tin fume | Tin, metal | 2 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | tin fume | Inhalable dust (not otherwise classified) | 10 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | tin fume | Respirable dust (not otherwise classified) | 3 mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure
Standards | copper
fume | Copper (fume) | 0.2
mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure
Standards | copper
fume | Copper, dusts & mists (as Cu) | 1 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | copper
fume | Respirable dust (not otherwise classified) | 3 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | copper
fume | Inhalable dust (not otherwise classified) | 10 mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand
Workplace
Exposure Standards (WES) | copper
fume | Copper and its inorganic compounds, as Cu respirable dust | 0.01
mg/m3 | Not
Available | Not
Available | (dsen) - Dermal
sensitiser | # **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-------------|---------|----------|-----------| | tin | 6 mg/m3 | 67 mg/m3 | 400 mg/m3 | | copper | 3 mg/m3 | 33 mg/m3 | 200 mg/m3 | | tin fume | 6 mg/m3 | 67 mg/m3 | 400 mg/m3 | | copper fume | 3 mg/m3 | 33 mg/m3 | 200 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |------------|---------------|---------------| | tin | Not Available | Not Available | Chemwatch: **5659-50** Page **7** of **15** Part Number: Version No: **4.1** #### Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** | Ingredient | Original IDLH | Revised IDLH | |-------------|---------------|---------------| | copper | 100 mg/m3 | Not Available | | tin fume | Not Available | Not Available | | copper fume | 100 mg/m3 | Not Available | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For brazing or soldering the nature of ventilation is determined by the location of the work. - For outdoor work, natural ventilation is generally sufficient. - For indoor work, conducted in either open or limited spaces, use mechanical (general exhaust or plenum) ventilation. (Open work spaces exceed 300 cubic meters per welder) For work conducted in confined spaces, mechanical ventilation, using local exhaust systems, is required. (In confined spaces always check that oxygen has not been depleted by excessive rusting of steel or snowflake corrosion of aluminium) Mechanical or local exhaust ventilation may not be required where the process working time does not exceed 24 mins. (in an 8 hr. shift) provided the work is intermittent (a maximum of 5 mins. every hour). Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |--|---------------------------------| | welding, brazing fumes (released at relatively low velocity into moderately still air) | 0.5-1,0 m/s
(100-200 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of welding or brazing fumes generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Individual protection measures, such as personal protective equipment - Goggles or other suitable eye protection shall be used during all gas welding or oxygen cutting operations. Spectacles without side shields, with suitable filter lenses are permitted for use during gas welding operations on light work, for torch brazing or for inspection. - For most open welding/brazing operations, goggles, even with appropriate filters, will not afford sufficient facial protection for operators. Where possible use welding helmets or handshields corresponding to EN 175, ANSI Z49:12005, AS 1336 and AS 1338 which provide the maximum possible facial protection from flying particles and fragments. [WRIA-WTIA Technical Note 71 - An approved face shield or welding helmet can also have filters for optical radiation protection, and offer additional protection against debris and sparks. - UV blocking protective spectacles with side shields or welding goggles are considered primary protection, with the face shield or welding helmet considered secondary protection. - The optical filter in welding goggles, face mask or helmet must be a type which is suitable for the sort of work being done. A filter suitable for gas welding, for instance, should not be used for arc welding. - Face masks which are self dimming are available for arc welding, MIG, TIG and plasma cutting, and allow better vision before the arc is struck and after it is extinguished. Welding helmet with suitable filter. Welding hand shield with suitable filter. # Eye and face protection Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** | Skin protection | See Hand protection below | |-----------------------|--| | Hands/feet protection | Welding gloves conforming to Standards such as EN 12477:2001, ANSI Z49.1, AS/NZS 2161:2008 produced from leather, rubber, treated cotton,or alumininised These gloves protect against mechanical risk caused by abrasion, blade cut, tear and puncture Other gloves which protect against thermal risks (heat and fire) might also be considered - these comply with different standards to those mentioned above. One pair of gloves may not be suitable for all processes. For example, gloves that are suitable for low current Gas Tungsten Arc Welding (GTAW) (thin and flexible) would not be proper for high-current Air Carbon Arc Cutting (CAC-A) (insulated, tough, and durable) Welding Gloves Safety footwear | | Body protection | See Other protection below | | Other protection | Before starting; consider that protection should be provided for all personnel within 10 metres of any open arc welding operation. Welding sites must be adequately shielded with screens of non flammable materials. Screens should permit ventilation at floor and ceiling levels. During repair or maintenance activities the potential exists for exposures to toxic metal particulate in excess of the occupational standards. Under these circumstances, protecting workers can require the use of specific work practices or procedures involving the combined use of ventilation, wet and vacuum cleaning methods, respiratory protection, decontamination, special protective clothing, and when necessary, restricted work zones. Protective over-garments or work clothing must be worn by
persons who may become contaminated with particulate during activities such as machining, furnace rebuilding, air cleaning equipment filter changes, maintenance, furnace tending, etc. Contaminated work clothing and over-garments must be managed in a controlled manner to prevent secondary exposure to workers of third parties, to prevent the spread of particulate to other areas, and to prevent particulate from being taken home by workers. Personnel who handle and work with molten metal should utilise primary protective clothing like polycarbonate face shields, fire resistant tapper's jackets, neck shades (snoods), leggings, spats and similar equipment to prevent burn injuries. In addition to primary protection, secondary or day-to-day work clothing that is fire resistant and sheds metal splash is recommended for use with molten metal. Synthetic materials should never be worn even as secondary clothing (undergarments). Aprons, sleeves, shoulder covers, leggings or spats of pliable flame resistant leather or other suitable materials may also be required in positions where these areas of the body will encounter hot metal. | # **SECTION 9 Physical and chemical properties** # Information on basic physical and chemical properties | Αp | pea | ran | ce | |----|-----|-----|----| White, gray, silver-white colored lustrous solid wire with no odor; does not mix with water. Massive form of the metal. Massive or bulk metals (as opposed to dispersed or divided metals) are characterised by having a well-ordered infinite lattice of metal atoms. Massive metals exist in various forms, including sheets, rods, ingots, foils, pellets, wire or on occasion, dusts. | Physical state | Manufactured | Relative density (Water = 1) | Not Available | |--|----------------|---|----------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | >400 | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 Stability and reactivity** #### Page 9 of 15 # Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** | nation on toxicolog | ical effects | |---------------------|---| | Inhaled | The inhalation of small particles of metal oxide results in sudden thirst, a sweet, metallic foul taste, throat irritation, cough, dry mucous membranes, tiredness and general unwellness. Headache, nausea and vomiting, fever or chills, restlessness, sweating diarrhoea, excessive urination and prostration may also occur. Component metals which form part of massive metals and their alloys are "locked" into a metal lattice, and as a result they are not easily absorbed following inhalation. Secondary processes (for example, a change in pH or the action of bacteria in the gut) may allow certain substances to be released in low concentrations. Fumes evolved during welding operations may be irritating to the upper-respiratory tract and may be harmful if inhaled. | | Ingestion | Overexposure is unlikely in this form. Metals which form part of massive metals and their alloys, are "locked" into a metal lattice; as a result they are not readily bioavailable following ingestion. Secondary processes (e.g. change in pH or intervention by gastrointestinal microorganisms) may allow certain substances to be released in low concentrations. | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable glov be used in an occupational setting. Skin contact does not normally present a hazard, though it is always possible that occasionally individuals may be found who react to substances usually regarded as inert. | | Еуе | Contact with the eye by metal dusts may cause scratching on the cornea and other injuries, which are usually minor. However, foreign body penetration of the eyeball may cause infection or result in permanent loss of vision. High-speed machines (such as drills and saws) can produce white-hot particles of metal that resemble sparks. Any of these white-hot particles can enter the unprotected eye, and become embedded deep within it. Foreign bodies that penetrate the insi of the eye can cause infection (endophthalmitis). During the first hours after injury, symptoms of foreign bodies within the eye may be similar to those of scratching of the cornea However, people with foreign bodies within the eye may also have a noticeable loss of vision. Fluid may leak from the eye, although this may not be noticeable if the foreign body is small. Pain may also increase after the first few hours. Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may also results with windburn). Slight abrasive damage may also results and other provinces are supplied to the | | Chronic | Principal route of exposure is inhalation of welding fumes from electrodes and workpiece. Reaction products arising from electrode core and flux appear as welding fume depending on welding conditions, relative volatilities of metal oxides and any coatings on the workpiece. Studies of lung cancer among welders indicate that they may experience a 30-40% increased risk compared to the general population. Since smoking and exposure to other cancer-causing agents, such as asbestos fibre, may influence these results, it is not clear whether welding, in fact, represents a significant lung cancer risk. Whilst mild steel weldin represents little risk, the stainless steel welder, exposed to chromium and nickel fume, may be at risk and it is this factor which may account for the overall increase in lung cancer incidence among welders. Cold isolated electrodes are relatively harmless. Metal oxides generated by industrial processes such as welding may cause a number of potential health problems. Particles smaller than 5 microns in diameter (which may be breathed in) may cause reduction in lung function. Particles of less than 1.5 microns can be trapped in the lungs, and, depending on the nature of the particle, may cause further serious health consequences. Exposure to fume containing high concentrations of water-soluble chromium (VI) during the
welding of stainless steels in confined spaces has been reported to result in chronic chrome intoxication, dermatitis and asthma. Certain insoluble chromium (VI) compounds have been named as carcinogens (by the ACGIH) in other work environments. Chromium may also appear in welding fumes as Cr2O3 or double oxides with iron. These chromium (III) compounds are generally biologically inert. Welding fume with high levels of ferrous materials may lead to particle deposition in the lungs (siderosis) after long exposure. This clears up when exposure stops. Chronic exposure to iron dusts may lead to be non-harmful. | Other welding process exposures can arise from radiant energy UV flash burns, thermal burns or electric shock over-exposed individuals, however, no confirmatory studies of this effect in welders have been reported. The welding arc emits ultraviolet radiation at wavelengths that have the potential to produce skin tumours in animals and in Chemwatch: **5659-50** Page 10 of 15 Selective Solder Wire, SN100C, Solid Core Issue Date: 12/03/2024 Print Date: 14/03/2024 | Part Nu | mbe | r: | |---------|-----|-----| | Version | No: | 4.1 | | Selective Solder Wire, | TOXICITY | IRRITATION | | |------------------------|--|--|--| | SN100C, Solid Core | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | tin | Inhalation (Rat) LC50: >4.75 mg/l4h ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | | Oral (Rat) LD50: >2000 mg/kg ^[1] | | | | | TOXICITY | IRRITATION | | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | copper | Inhalation (Rat) LC50: 0.733 mg/l4h ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | | Oral (Mouse) LD50; 0.7 mg/kg ^[2] | | | | | TOXICITY | IRRITATION | | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | tin fume | Inhalation (Rat) LC50: >4.75 mg/l4h ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | | Oral (Rat) LD50: >2000 mg/kg ^[1] | | | | | TOXICITY | IRRITATION | | | _ | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | copper fume | Inhalation (Rat) LC50: 0.733 mg/l4h ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | | Oral (Mouse) LD50; 0.7 mg/kg ^[2] | | | | | | | | WARNING: Inhalation of high concentrations of copper fume may cause "metal fume fever", an acute industrial disease of short duration. Symptoms are tiredness, influenza like respiratory tract irritation with fever. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. for copper and its compounds (typically copper chloride): Acute toxicity: There are no reliable acute oral toxicity results available. In an acute dermal toxicity study (OECD TG 402), one group of 5 male rats and 5 groups of 5 female rats received doses of 1000, 1500 and 2000 mg/kg bw via dermal application for 24 hours. The LD50 values of copper monochloride were 2,000 mg/kg bw or greater for male (no deaths observed) and 1,224 mg/kg bw for female. Four females died at both 1500 and 2000 mg/kg bw, and one at 1,000 mg/kg bw. Symptom of the hardness of skin, an exudation of hardness site, the formation of scar and reddish changes were observed on application sites in all treated animals. Skin inflammation and injury were also noted. In addition, a reddish or black urine was observed in females at 2,000, 1,500 and 1,000 mg/kg bw. Female rats appeared to be more sensitive than male based on mortality and clinical signs. No reliable skin/eye irritation studies were available. The acute dermal study with copper monochloride suggests that it has a potential to cause skin irritation. COPPER Repeat dose toxicity: In repeated dose toxicity study performed according to OECD TG 422, copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39 - 51 days to females at concentrations of 0, 1.3, 5.0, 20, and 80 mg/kg bw/day. The NOAEL value was 5 and 1.3 mg/kg bw/day for male and female rats, respectively. No deaths were observed in male rats. One treatment-related death was observed in female rats in the high dose group. Erythropoietic toxicity (anaemia) was seen in both sexes at the 80 mg/kg bw/day. The frequency of squamous cell hyperplasia of the forestomach was increased in a dose-dependent manner in male and female rats at all treatment groups, and was statistically significant in males at doses of =20 mg/kg bw/day and in females at doses of =5 mg/kg bw/day doses. The observed effects are considered to be local, non-systemic effect on the forestomach which result from oral (gavage) administration of copper monochloride. Genotoxicity: An in vitro genotoxicity study with copper monochloride showed negative results in a bacterial reverse mutation test with Salmonella typhimurium strains (TA 98, TA 100, TA 1535, and TA 1537) with and without S9 mix at concentrations of up to 1,000 ug/plate. An in vitro test for chromosome aberration in Chinese hamster lung (CHL) cells showed that copper monochloride induced structural and numerical aberrations at the concentration of 50, 70 and 100 ug/mL without S9 mix. In the presence of the metabolic activation system, significant increases of structural aberrations were observed at 50 and 70 ug/mL and significant increases of numerical aberrations were observed at 70 ug/mL. In an in vivo mammalian erythrocyte micronucleus assay, all animals dosed (15 - 60 mg/kg bw) with copper monochloride exhibited similar PCE/(PCE+NCE) ratios and MNPCE frequencies compared to those of the negative control animals. Therefore copper monochloride is not an in vivo mutagen. **Carcinogenicity:** there was insufficient information to evaluate the carcinogenic activity of copper monochloride. Version No: 4.1 #### Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** Reproductive and developmental toxicity: In the combined repeated dose toxicity study with the reproduction/developmental toxicity screening test (OECD TG 422), copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39-51 days to females at concentrations of 0, 1.3, 5.0, 20, and 80 mg/kg bw/day. The NOAEL of copper monochloride for fertility toxicity was 80 mg/kg bw/day for the parental animals. No treatment-related effects were observed on the reproductive organs and the fertility parameters assessed. For developmental toxicity the NOAEL was 20 mg/kg bw/day. Three of 120 pups appeared to have icterus at birth; 4 of 120 pups appeared runted at the highest dose tested (80 mg/kg bw/day). **TIN & TIN FUME** No significant acute toxicological data identified in literature search. | Acute Toxicity | ~ | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye
Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | **Legend: X** − Data either not available or does not fill the criteria for classification ✓ – Data available to make classification # **SECTION 12 Ecological information** #### **Toxicity** | Calaatina Calalaa Wina | Endpoint | Test Duration (hr) | | Species | | Value | Source | |--|------------------|--------------------|---------------------------------|-------------------------------|------|------------------|-----------------| | Selective Solder Wire,
SN100C, Solid Core | Not
Available | Not Available | | Not Available | | Not
Available | Not
Availabl | | | Endpoint | Test Duration (hr) | | Species | | Value | Sourc | | | EC50 | 72h | | Algae or other aquatic plants | | >0.019mg/L | 2 | | tin | NOEC(ECx) | 168h | | Crustacea | | <0.005mg/L | 2 | | | LC50 | 96h | | Fish | | >0.012mg/L | 2 | | | Endpoint | Test Duration (hr) | S | pecies | Valu | ie | Sourc | | | EC50 | 48h | С | rustacea | 0.00 | 06-0.0017mg/l | 4 | | | EC50 | 96h | Al | lgae or other aquatic plants | 0.03 | -0.058mg/l | 4 | | copper | EC50 | 72h | Al | lgae or other aquatic plants | 0.01 | 1-0.017mg/L | 4 | | | NOEC(ECx) | 48h | Fish | | 0.00 | 009mg/l | 4 | | | LC50 | 96h | Fi | sh | 0.00 | 3mg/L | 2 | | | Endpoint | Test Duration (hr) | | Species | | Value | Source | | tin fume | EC50 | 72h | | Algae or other aquatic plants | | >0.019mg/L | 2 | | tin tume | NOEC(ECx) | 168h | | Crustacea | | <0.005mg/L | 2 | | | LC50 | 96h | | Fish | | >0.012mg/L | 2 | | | Endpoint | Test Duration (hr) | S | pecies | Valu | ie | Source | | | EC50 | 48h | Crustacea | | 0.00 | 06-0.0017mg/l | 4 | | copper fume | EC50 | 96h | Algae or other aquatic plants 0 | | 0.03 | -0.058mg/l | 4 | | copper runie | EC50 |
72h | Al | lgae or other aquatic plants | 0.01 | 1-0.017mg/L | 4 | | | NOEC(ECx) | 48h | Fi | ish | 0.00 | 009mg/l | 4 | | | LC50 | 96h | Fi | ish | 0.00 | 3mg/L | 2 | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data # DO NOT discharge into sewer or waterways. Very toxic to aquatic organisms. # Persistence and degradability Ingredient Persistence: Water/Soil Persistence: Air Version No: 4.1 #### Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - ▶ Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal. - ▶ Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance. Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately. #### **SECTION 14 Transport information** # Labels Required Marine Pollutant HAZCHEM Not Applicable Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | tin | Not Available | | copper | Not Available | | tin fume | Not Available | #### Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** | Product name | Group | |--------------|---------------| | copper fume | Not Available | #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------|---------------| | tin | Not Available | | copper | Not Available | | tin fume | Not Available | | copper fume | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|---| | HSR002612 | Metal Industry Products Subsidiary Hazard Group Standard 2020 | Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit. #### tin is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Land Transport Rule: Dangerous Goods 2005 - Schedule 1 Quantity limits for dangerous goods New Zealand Workplace Exposure Standards (WES) #### copper is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 $\,$ Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Land Transport Rule: Dangerous Goods 2005 - Schedule 1 Quantity limits for dangerous goods New Zealand Workplace Exposure Standards (WES) #### tin fume is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) # copper fume is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) New Zealand Approved Hazardous Substances with controls #### Selective Solder Wire, SN100C, Solid Core Issue Date: **12/03/2024**Print Date: **14/03/2024** New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) # **Additional Regulatory Information** Not Applicable #### **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantities | |----------------|----------------| | Not Applicable | Not Applicable | # **Certified Handler** Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information #### Maximum quantities of certain hazardous substances permitted on passenger service vehicles Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Gas (aggregate water capacity in mL) | Liquid (L) | Solid (kg) | Maximum quantity per package for each classification | |----------------|--------------------------------------|-------------------|-------------------|--| | Not Applicable | Not Applicable | Not
Applicable | Not
Applicable | Not Applicable | # **Tracking Requirements** Not Applicable #### **National Inventory Status** | National inventory Status | | | | |--|---|--|--| | National Inventory | Status | | | | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | | Canada - DSL | Yes | | | | Canada - NDSL | No (tin; copper; tin fume; copper fume) | | | | China - IECSC | Yes | | | | Europe - EINEC / ELINCS /
NLP | Yes | | | | Japan - ENCS | No (tin; copper; tin fume; copper fume) | | | | Korea - KECI | Yes | | | | New Zealand - NZIoC | Yes | | | | Philippines - PICCS | Yes | | | | USA - TSCA | Yes | | | | Taiwan - TCSI | Yes | | | | Mexico - INSQ | Yes | | | | Vietnam - NCI | Yes | | | | Russia - FBEPH | Yes | | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | | #### **SECTION 16 Other information** | Revision Date | 12/03/2024 | |---------------|------------| | Initial Date | 05/03/2024 | Chemwatch: 5659-50 Page 15 of 15 Issue
Date: 12/03/2024 Part Number: Selective Solder Wire, SN100C, Solid Core Version No: 4.1 #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.